1,807 research outputs found

    Testing the black disk limit in pppp collisions at very high energy

    Full text link
    We use geometric scaling invariant quantities to measure the approach, or not, of the imaginary and real parts of the elastic scattering amplitude, to the black disk limit, in pppp collisions at very high energy.Comment: 11 pages, 4 figure

    The imprints of superstatistics in multiparticle production processes

    Full text link
    We provide an update of the overview of imprints of Tsallis nonextensive statistics seen in a multiparticle production processes. They reveal an ubiquitous presence of power law distributions of different variables characterized by the nonextensivity parameter q > 1. In nuclear collisions one additionally observes a q-dependence of the multiplicity fluctuations reflecting the finiteness of the hadronizing source. We present sum rules connecting parameters q obtained from an analysis of different observables, which allows us to combine different kinds of fluctuations seen in the data and analyze an ensemble in which the energy (E), temperature (T) and multiplicity (N) can all fluctuate. This results in a generalization of the so called Lindhard's thermodynamic uncertainty relation. Finally, based on the example of nucleus-nucleus collisions (treated as a quasi-superposition of nucleon-nucleon collisions) we demonstrate that, for the standard Tsallis entropy with degree of nonextensivity q < 1, the corresponding standard Tsallis distribution is described by q' = 2 - q > 1.Comment: 12 pages, 3 figures. Based on invited talk given by Z.Wlodarczyk at SigmaPhi2011 conference, Larnaka, Cyprus, 11-15 July 2011. To be published in Cent. Eur. J. Phys. (2011

    Estimating the inelasticity with the information theory approach

    Get PDF
    Using the information theory approach, in both its extensive and nonextensive versions, we estimate the inelasticity parameter KK of hadronic reactions together with its distribution and energy dependence from ppˉp\bar{p} and pppp data. We find that the inelasticity remains essentially constant in energy except for a variation around K0.5K\sim 0.5, as was originally expected.Comment: 14 pages, 8 figures. Misprints correcte

    Consequences of temperature fluctuations in observables measured in high energy collisions

    Full text link
    We review the consequences of intrinsic, nonstatistical temperature fluctuations as seen in observables measured in high energy collisions. We do this from the point of view of nonextensive statistics and Tsallis distributions. Particular attention is paid to multiplicity fluctuations as a first consequence of temperature fluctuations, to the equivalence of temperature and volume fluctuations, to the generalized thermodynamic fluctuations relations allowing us to compare fluctuations observed in different parts of phase space, and to the problem of the relation between Tsallis entropy and Tsallis distributions. We also discuss the possible influence of conservation laws on these distributions and provide some examples of how one can get them without considering temperature fluctuations.Comment: Revised version of the invited contribution to The European Physical Journal A (Hadrons and Nuclei) topical issue about 'Relativistic Hydro- and Thermodynamics in Nuclear Physics' guest eds. Tamas S. Biro, Gergely G. Barnafoldi and Peter Va

    Measurement of triple gauge boson couplings from W⁺W⁻ production at LEP energies up to 189 GeV

    Get PDF
    A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb⁻¹. After combining with our previous measurements at centre-of-mass energies of 161–183 GeV we obtain κ = 0.97_{-0.16}^{+0.20}, g_{1}^{z} = 0.991_{-0.057}^{+0.060} and λ = -0.110_{-0.055}^{+0.058}, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their Standard Model values. These results are consistent with the Standard Model expectations

    Measurement of the charm structure function F_{2,c)^{γ} of the photon at LEP

    Get PDF
    The production of charm quarks is studied in deep-inelastic electron–photon scattering using data recorded by the OPAL detector at LEP at nominal e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D⁰π with the D⁰ observed in two decay modes with charged particle final states, Kπ and Kπππ. The cross-section σ^{D*} for production of charged D* in the reaction e⁺e⁻→e⁺e⁻D*Χ is measured in a restricted kinematical region using two bins in Bjorken x, 0.00140.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x<0.1 the measured cross-section is 43.8±14.3±6.3±2.8 pb with a next-to-leading order prediction of 17.0⁺²·⁹_₂.₃ pb

    Measurement of the hadronic photon structure function F_{2}^{γ} at LEP2

    Get PDF
    The hadronic structure function of the photon F_{2}^{γ} (x, Q²) is measured as a function of Bjorken x and of the photon virtuality Q² using deep-inelastic scattering data taken by the OPAL detector at LEP at e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F_{2}^{γ} are extended to an average Q² of 〈Q²〉=780 GeV² using data in the kinematic range 0.15<x<0.98. The Q² evolution of F_{2}^{γ} is studied for 12.1<〈Q²〉<780 GeV² using three ranges of x. As predicted by QCD, the data show positive scaling violations in F_{2}^{γ} with F_{2}^{γ} (Q²)/α = (0.08±0.02⁺⁰·⁰⁵_₀.₀₃) + (0.13±0.01⁺⁰·⁰¹_₀.₀₁) lnQ², where Q² is in GeV², for the central x region 0.10–0.60. Several parameterisations of F_{2}^{γ} are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data

    Determination of alpha_s using Jet Rates at LEP with the OPAL detector

    Full text link
    Hadronic events produced in e+e- collisions by the LEP collider and recorded by the OPAL detector were used to form distributions based on the number of reconstructed jets. The data were collected between 1995 and 2000 and correspond to energies of 91 GeV, 130-136 GeV and 161-209 GeV. The jet rates were determined using four different jet-finding algorithms (Cone, JADE, Durham and Cambridge). The differential two-jet rate and the average jet rate with the Durham and Cambridge algorithms were used to measure alpha(s) in the LEP energy range by fitting an expression in which order alpah_2s calculations were matched to a NLLA prediction and fitted to the data. Combining the measurements at different centre-of-mass energies, the value of alpha_s (Mz) was determined to be alpha(s)(Mz)=0.1177+-0.0006(stat.)+-0.0012$(expt.)+-0.0010(had.)+-0.0032(theo.) \.Comment: 40 pages, 17 figures, Submitted to Euro. Phys. J.

    Colour reconnection in e+e- -> W+W- at sqrt(s) = 189 - 209 GeV

    Full text link
    The effects of the final state interaction phenomenon known as colour reconnection are investigated at centre-of-mass energies in the range sqrt(s) ~ 189-209 GeV using the OPAL detector at LEP. Colour reconnection is expected to affect observables based on charged particles in hadronic decays of W+W-. Measurements of inclusive charged particle multiplicities, and of their angular distribution with respect to the four jet axes of the events, are used to test models of colour reconnection. The data are found to exclude extreme scenarios of the Sjostrand-Khoze Type I (SK-I) model and are compatible with other models, both with and without colour reconnection effects. In the context of the SK-I model, the best agreement with data is obtained for a reconnection probability of 37%. Assuming no colour reconnection, the charged particle multiplicity in hadronically decaying W bosons is measured to be (nqqch) = 19.38+-0.05(stat.)+-0.08 (syst.).Comment: 30 pages, 9 figures, Submitted to Euro. Phys. J.

    Scaling violations of quark and gluon jet fragmentation functions in e+e- annihilations at sqrt(s) = 91.2 and 183-209 GeV

    Full text link
    Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are measured in e+e- annihilations from data collected at centre-of-mass energies of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are defined by hemispheres of inclusive hadronic events, while the biased jet measurements are based on three-jet events selected with jet algorithms. Several methods are employed to extract the fragmentation functions over a wide range of scales. Possible biases are studied in the results are obtained. The fragmentation functions are compared to results from lower energy e+e- experiments and with earlier LEP measurements and are found to be consistent. Scaling violations are observed and are found to be stronger for the fragmentation functions of gluon jets than for those of quarks. The measured fragmentation functions are compared to three recent theoretical next-to-leading order calculations and to the predictions of three Monte Carlo event generators. While the Monte Carlo models are in good agreement with the data, the theoretical predictions fail to describe the full set of results, in particular the b and gluon jet measurements.Comment: 46 pages, 17 figures, Submitted to Eur. Phys J.
    corecore